Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuroimage ; 256: 119216, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35452803

RESUMO

Currently, there is great interest in making neuroimaging widely accessible and thus expanding the sampling population for better understanding and preventing diseases. The use of wearable health devices has skyrocketed in recent years, allowing continuous assessment of physiological parameters in patients and research cohorts. While most health wearables monitor the heart, lungs and skeletal muscles, devices targeting the brain are currently lacking. To promote brain health in the general population, we developed a novel, low-cost wireless cerebral oximeter called FlexNIRS. The device has 4 LEDs and 3 photodiode detectors arranged in a symmetric geometry, which allows for a self-calibrated multi-distance method to recover cerebral hemoglobin oxygenation (SO2) at a rate of 100 Hz. The device is powered by a rechargeable battery and uses Bluetooth Low Energy (BLE) for wireless communication. We developed an Android application for portable data collection and real-time analysis and display. Characterization tests in phantoms and human participants show very low noise (noise-equivalent power <70 fW/√Hz) and robustness of SO2 quantification in vivo. The estimated cost is on the order of $50/unit for 1000 units, and our goal is to share the device with the research community following an open-source model. The low cost, ease-of-use, smart-phone readiness, accurate SO2 quantification, real time data quality feedback, and long battery life make prolonged monitoring feasible in low resource settings, including typically medically underserved communities, and enable new community and telehealth applications.


Assuntos
Encéfalo/fisiologia , Oximetria/métodos , Dispositivos Eletrônicos Vestíveis , Tecnologia sem Fio , Cabeça , Hemoglobinas/análise , Humanos , Oximetria/economia , Oximetria/instrumentação , Imagens de Fantasmas , Dispositivos Eletrônicos Vestíveis/economia , Tecnologia sem Fio/economia
2.
Sensors (Basel) ; 22(6)2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35336531

RESUMO

Capacitive proximity sensing is widespread in our everyday life, but no sensor for biomedical optics takes advantage of this technology to monitor the probe attachment to the subject's skin. In particular, when using optical monitoring devices, the capability to quantitatively measure the probe contact can significantly improve data quality and ensure the subject's safety. We present a custom novel optical probe based on a flexible printed circuit board which integrates a capacitive contact sensor, 3D-printed optic fiber holders and an accelerometer sensor. The device can be effectively adopted during continuous monitoring optical measurements to detect contact quality, motion artifacts, probe detachment and ensure optimal signal quality.


Assuntos
Artefatos , Tecnologia de Fibra Óptica , Monitorização Fisiológica , Movimento (Física)
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...